Learning Framework for Non-stationary and Imbalanced Data Stream

نویسندگان

  • Meenakshi A. Thalor
  • S. T. Patil
چکیده

Abstract—Although learning on non-stationary data and imbalanced data have been extensively studied in the literature separately, however little work has been done to tackle the imbalanced issue on nonstationary data stream as the joint probability distribution between the data and classes changes with time and may results skewed class distribution. Especially in airlines delay detection, data sources are dynamic generated at high speed in real time, type of delay activity changes with time and in each chunk of stream, delay detection instances are less so concept drift and class imbalanced issues arises simultaneously. Through this research work we propose an ensemble based incremental learning approach towards non-stationary imbalanced data stream. Keyword-Concept Drift, Ensemble, Imbalanced Data, Incremental Learning,Non-stationary Data

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conversion of Imbalanced Data Into A Stream Using SMOTE Algorithm

Machine learning approach has got major importance when distribution of data is unknown. Classification of data from the data set causes some problem when distribution of data is unknown. Characterization of raw data relates to whether the data can take on only discrete values or whether the data is continuous. In real world application data drawn from non-stationary distribution, causes the pr...

متن کامل

A Dynamic Ensemble Framework for Mining Textual Streams with Class Imbalance

Textual stream classification has become a realistic and challenging issue since large-scale, high-dimensional, and non-stationary streams with class imbalance have been widely used in various real-life applications. According to the characters of textual streams, it is technically difficult to deal with the classification of textual stream, especially in imbalanced environment. In this paper, ...

متن کامل

Ensemble of subset online sequential extreme learning machine for class imbalance and concept drift

In this paper, a computationally efficient framework, referred to as ensemble of subset online sequential extreme learning machine (ESOS-ELM), is proposed for class imbalance learning from a concept-drifting data stream. The proposed framework comprises a main ensemble representing short-term memory, an information storage module representing long-term memory and a change detection mechanism to...

متن کامل

Ensemble learning for data stream analysis: A survey

In many applications of information systems learning algorithms have to act in dynamic environments where data are collected in the form of transient data streams. Compared to static data mining, processing streams imposes new computational requirements for algorithms to incrementally process incoming examples while using limited memory and time. Furthermore, due to the non-stationary character...

متن کامل

Recursive least square perceptron model for non-stationary and imbalanced data stream classification

Classifying non-stationary and imbalanced data streams encompasses two important challenges, namely concept drift and class imbalance. ‘‘Concept drift’’ (or nonstationarity) is changes in the underlying function being learnt, and class imbalance is vast difference between the numbers of instances in different classes of data. Class imbalance is an obstacle for the efficiency of most classifiers...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016